
Journal of Geometry and Physics 51 (2004) 244–255

On Einstein four-manifolds

Ézio de Araujo Costa
Instituto de Matematica, Universidade Federal da Bahia, Av. Ademar de Barros, Ondina,

CEP 40170-110 Salvador-Bahia, Brazil

Received 18 May 2003; received in revised form 21 October 2003

Abstract

In this paper we obtain obstructions to the existence of Einstein metrics satisfying auxiliary
sectional curvature bounds. In particular, we give sufficient conditions for a compact-oriented
Einstein four-manifoldM to be isometric to either the sphereS4 or the complex projective space
CP2. Also, we improve the Hitchin–Thorpe’s inequality which relates the Euler characteristic of
M and its signature.
© 2003 Elsevier B.V. All rights reserved.

MSC:53C25; 53C24

JGP SC:Differential geometry; General relativity

Keywords:Four-manifold; Einstein manifold; Sectional curvature; Euler characteristic

1. Introduction

A basic problem in Riemannian geometry is to decide if a Riemannian manifold carries an
Einstein metric. In particular, in dimension four, the spheresS4, the product of two spheres
of same curvatureS2 × S2, the real projective space RP4 and the complex projective space
CP2 are examples of compact Einstein manifolds. Initially we state our results. For this, let
M be a compact-oriented four-dimensional Riemannian manifold. The Weyl tensorW of
M has a decompositionW = W+ ⊕ W−, whereW± are theself-dualandanti-self-dual
Weyl tensors ofM, respectively. IfM is an Einstein four-manifold with Ricci curvatureρ
and volume form dV , then the Euler characteristic ofM and its signatureτ are given by

χ(M) = 1

8π2

∫
M

(
|W+|2 + |W−|2 + 2ρ2

3

)
dV (1.1)
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and

τ(M) = 1

12π2

∫
M

(|W+|2 − |W−|2)dV. (1.2)

For these Einstein manifolds, holds the classical Hitchin–Thorpe inequality (see[8]).

Theorem A (Hitchin). Let M be a compact-oriented Einstein four-manifold. Then

χ ≥ 3
2|τ|. (1.3)

Moreover, if M has non-negative(non-positive) sectional curvature, then

χ ≥ (3
2)

3/2|τ|. (1.4)

In [7, Theorem B], Gursky and LeBrun improved the inequality(1.4)(see also[10], Propo-
sition 10.2, p. 281 and Remark 10.1, p. 282).

Theorem B (Gursky–LeBrun).Let M be a compact and oriented Einstein four-manifold
with sectional curvature K.

(i) If K ≥ 0 andW± 	≡ 0, then

χ > 15
4 |τ|. (1.5)

(ii) If K ≤ 0, then

χ ≥ 15
8 |τ|. (1.6)

Our first result is similar toTheorem B(ii).

Theorem 1.1. Let M be a compact-oriented Einstein four-manifold with sectional curvature
K and Ricci curvatureρ. If ρ < 0 and inf K ≥ 2ρ/3, then

χ ≥ 15
8 |τ|. (1.7)

Example 1.1. Let M be a oriented four-manifold such thatM is homeomorphic to either

CP2�jCP2,6 ≤ j ≤ 8,CP2�CP2�CP2 or (S2 × S2)�jCP2,5 ≤ j ≤ 8, where� is the
connected sum. ByTheorem 1.1, M do not admit an Einstein metric with Ricci curvature
ρ < 0 and sectional curvatureK such that infK ≥ 2ρ/3.

There are few known examples of compact Einstein four-manifoldsM with sectional
curvatureK ≥ 0. In particular, Berger[2, Theorem 2 and Remark 2]proved thatif there
existsK0 > 0 such thatK0/4 ≤ K ≤ K0, then M is isometric to eitherS4, RP4 or CP2. In
[12, Theorem 1.1a], Yang proved the following:Let M be a compact Einstein four-manifold
with Ricci curvature 1. If K ≥ (

√
1249− 23)/20  0.102843,then M is isometric to

either S4, RP4 or CP2. A compact-oriented four-manifoldM is definite if the space of
negative (positive) harmonic two-formsH2−(M) = 0 (H+

2 (M) = 0). Gursky and LeBrun
[7, Theorem A]proved thatif M is a compact-oriented four-manifold withK ≥ 0 and
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H2+(M) 	= 0, then M is isometric toCP2. Our next theorem improves the results of Berger,
Yang and Gursky/LeBrun.

Theorem 1.2. Let M be a compact Einstein four-manifold with Ricci curvatureρ > 0 and
sectional curvature K. Then we have

(a) If supK ≤ 2ρ/3, then M is isometric to eitherS4, RP4 or CP2.
(b) If ρ = 1 and inf K ≥ (2 − √

2)/6  0.097631,then M is isometric to eitherS4, RP4

or CP2, with their normalized metrics.
(c) Letρ = 1,K ≥ 0 and M oriented. If |W+|2 ≤ 2/3, then M is isometric to eitherS4 or

CP2 or the universal covering̃M of M is isometric toS2 × S2, with their normalized
metrics. If |W+|2 ≥ 2/3, then M is isometric toCP2 or M̃ is isometric toS2 × S2, with
their normalized metrics.

(d) Let M be oriented definite with signatureτ 	= 0. If inf K ≥ (2 − √
5)ρ/6 or supK ≤

(2 + √
5)ρ/6, then M is isometric toCP2.

Corollary 1.1. Let M be a compact-oriented Einstein four-manifold with sectional curva-
tureK ≥ 0. If |W | is constant, then M is isometric to eitherS4 or CP2 or M̃ is isometric to
S2 × S2.

An Einstein manifoldM with metricg is rigid (see Definition 12.64 of[1]), if in a small
neighborhood ofg there is no other Einstein metric. According to Bourguignon (see Corol-
lary 12.72 of[1]), if M has dimension 4 and its sectional curvatureK satisfiesK0/6 < K ≤
K0, thenM is rigid. Note that in this case, supK < 3ρ/4, whereρ is the Ricci curvature of
M. This suggests that Theorem 1.2(a) can be improved for supK ≤ 3ρ/4. In fact we have
the following proposition.

Proposition 1.1. A compact Einstein four-manifold with Ricci curvatureρ > 0 is rigid, if
the sectional curvature K satisfiessupK < 3ρ/4.

Another question can be considered: A Riemanniann-manifold M has purecurvature
operator, if for each pointx ofM, there exists a basis{X1, X2, . . . , Xn} of the tangent space
TxM such that all exterior productsXi∧Xj (i < j)are eigenvectors of the curvature operator
of M. For example,S4 andS2 × S2 have pure curvature operator but CP2 does not have
this property. Also, an Einstein four-submanifold of the Euclidean spaceR6 with positive
Ricci curvature has pure curvature operator (seeProposition 3.1). For these manifolds, we
can improve Theorem 1.2(a).

Theorem 1.3. Let M be a compact Einstein four-manifold with Ricci curvatureρ > 0 and
sectional curvature K such thatsupK ≤ ρ:

(a) If M has pure curvature operator, then M is isometric to eitherS4, RP4 or the universal
coveringM̃ ofM is isometric toS2 × S2.

(b) If M is a submanifold of the Euclidean spaceR6, then M is isometric to eitherS4 or
S2 × S2.
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2. Preliminaries

For an oriented four-dimensional manifoldM the bundle of two-forms splits∧2M =
∧+ ⊗ ∧− into +1-eigenspace of the Hodge∗-operator and−1-eigenspace. The Weyl cur-
vature tensorW is an endomorphism of∧2M such thatW = W+ ⊗ W−, whereW± :
∧± → ∧±. Note thatW± can be viewed as (0, 4)-tensor andW±|∧∓ ≡ 0. If M is an
Einstein four-manifold with Ricci curvatureρ and letx ∈ M, we use the normal form for
the curvature operator ofM (see[2,8]). Then there exists an orthonormal basis for∧2

x such
that the curvature operator takes the form(

A B

B A

)
,

whereA andB are given, respectively, by
 λ1 0 0

0 λ2 0
0 0 λ3


 and


µ1 0 0

0 µ2 0
0 0 µ3


 .

In particular, there exists an orthonormal basis of∧±
x forW±(x)with respective eigenvalues

λi ± µi − ρ/3, for i = 1,2,3. Moreover, theλi’s are relative critical values of sectional
curvature and

3∑
i=1

λi = ρ. (2.1)

Also, it follows of the first Bianchi’s identity that

3∑
i=1

µi = 0. (2.2)

By Lemma 2 of Berger[2],

|µi − µj| ≤ λi − λj, (2.3)

wherei > j andλ1 ≤ λ2 ≤ λ3. Using this basis,(1.1) and (1.2)become

χ = 1

4π2

∫
M

[
3∑
i=1

(λ2
i + µ2

i )

]
dV (2.4)

and

τ = 1

3π2

∫
M

[
3∑
i=1

λiµi

]
dV. (2.5)

We have the following lemma.

Lemma 2.1. Let M be a compact-oriented Einstein four-manifold with Ricci curvatureρ,
volume V, sectional curvature K, Euler characteristicχ and signatureτ. LetK0 = inf K
or K0 = supK.
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(a) Then

χ ≤ (5ρ2 + 36K2
0 − 24ρK0)V

12π2
.

Moreover, if we have the equality above andρ > 0, then M is isometric to eitherS4

or CP2.
(b) If M hasW± 	≡ 0 andρ > 0, then

χ >
3(36α2 − 24α+ 5)

2(36α2 − 24α+ 2)
|τ|,

whereα = K0/ρ.

Corollary 2.1. Let M be a compact-oriented Einstein four-manifold with Ricci curvature
ρ > 0, sectional curvature K, Euler characteristicχ and signatureτ. Letα = supK/ρ or
α = inf K/ρ. If n is the number of elements of the fundamental group of M, then

(a) M is isometric toS4 or

n <
2(36α2 − 24α+ 5)

χ
.

(b) If inf K ≥ (2−√
χ− 1)ρ/6 or supK ≤ (2+√

χ− 1)ρ/6 then M is simply connected.

Remark 2.1. In [8, Remark 5], Hitchin proposed the problem to know if the existence
of an Einstein metric implies anything about the fundamental group of a four-manifold.
Corollary 2.1is a partial response of this question.

Proof of Lemma 2.1.

(a) Letρ be the Ricci curvature ofM andK its sectional curvature. In accordance with
(2.3), µ2

i + µ2
j − 2µiµj ≤ λ2

i + λ2
j − 2λiλj, for i > j. Using(2.1) and (2.2)we have

6
3∑
i=1

(λ2
i + µ2

i ) ≤ 10
3∑
i=1

λ2
i − 4

∑
i>j

λiλj = 10ρ2 − 24
∑
i>j

λiλj. (2.6)

LetK0 = inf K orK0 = supK. Then

(λi −K0)(λj −K0) ≥ 0. (2.7)

By (2.6) and (2.7)we have
∑3

i=1(λ
2
i +µ2

i ) ≤ 5ρ2/3+36K2
0 −24K0ρ and so, it follows

from (2.4) that

χ ≤ (5ρ2 + 36K2
0 − 24K0ρ)V

12π2
. (2.8)

If we have an equality in(2.8), then(2.7), (2.6)and(2.3)become equalities. In particular,
from the equality in(2.7)we haveλ1 = λ2 = K0, λ3 = ρ−2K0 if K0 = inf K andλ2 =
λ3 = K0, λ1 = ρ− 2K0 if K0 = supK. In both cases,|W±| and detW± are constants
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and then by Proposition 9 of[5], M is locally symmetric and moreover the universal
coveringM̃ of M is symmetric. By Jensen[9], M̃ is isometric to eitherS2 × S2, S4 or
CP2. Letρ > 0 and assume that̃M is isometric toS2 × S2. Then supK = curvature of
S2 = ρ and infK = 0. If K0 = supK thenλ1 = ρ − 2K0 = −ρ < 0 (contradiction).
If K0 = inf K = 0, by equality in(2.8) we have thatχ = 5ρ2V/12π2. On the other
hand, sinceλ1 = λ2 = 0 andλ3 = ρ, it follows from equalities in(2.3) and (2.2)
that 2µ1 = 2µ2 = −µ3 and |3µ3| = ρ. In accordance with(2.4), χ = 7ρ2V/24π2

(contradiction). SoM̃ is isometric to eitherS4 or CP2. In particular,M has positive
sectional curvature and by Synge’s lemmaM = M̃. This provesLemma 2.1(a).

(b) LetM be a compact-oriented Einstein four-manifold with Ricci curvatureρ > 0 and
W± 	≡ 0. By Theorem 1 and Corollary 1 of[7],

∫
M

|W±|2 dV ≥ 2ρ2V

3
.

Using(1.1) and (1.2),

χ ≥ 3|τ|
2

+ ρ2V

4π2
.

On the other hand, it follows from the result of Hitchin[1, Theorem 13.30]thatM is
non-isometric to eitherS4 or CP2 and so, using the stricty inequality inLemma 2.1(a),
we obtain that

χ >
3

2

(
36α2 − 24α+ 5

36α2 − 24α+ 2

)
|τ|,

whereα = inf K/ρ or α = supK/ρ. �

Proof of Corollary 2.1.

(a) LetM be a compact-oriented Einstein four-manifold with Ricci curvatureρ > 0. If
M is non-isometric toS4, then the universal covering̃M of M is non-isometric toS4

and has Ricci curvatureρ > 0. Bishop’s inequality then asserts thatM̃ has volume
Ṽ < 2π2/ρ2. If n is the number of elements of the fundamental group ofM, then the
Euler characteristic̃χ of M̃ satisfiesχ̃ = nχ, whereχ is the Euler characteristic ofM.
UsingLemma 2.1(a) for M̃, we have thatnχ < 2(36K2

0 − 24ρK0 + 5ρ2)/ρ2 and this
provesCorollary 2.1(a).

(b) Letρ > 0 the Ricci curvature ofM andK its sectional curvature. Note that if infK ≥
(2 − √

χ− 1ρ)/6 or supK ≤ (2 + √
χ− 1ρ)/6, then

2(36α2 − 24α+ 5)

χ
≤ 2,

whereα = inf K/ρ or α = supK/ρ. So, byCorollary 2.1(a),n = 1 and this proves
thatM is simply connected. �
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3. Proofs

Proof of Theorem 1.1. Let M be a compact-oriented Einstein four-manifold with Ricci
curvatureρ, volumeV and sectional curvatureK. If ρ < 0 andK0 = inf K ≥ 2ρ/3 then
K0 = inf K ≤ 0. So, 36K2

0 − 24K0ρ ≤ 0 and it follows fromLemma 2.1that

χ ≤ 5ρ2V

12π2
. (3.1)

On the other hand, using(2.4) and (2.5),

2χ± 3τ = 1

2π2

∫
M

3∑
i=1

[λi ± µi]
2 dV

and so, by the Schwarz inequality,

2χ− 3|τ| ≥ ρ2V

6π2
.

Using(3.1), we have thatχ ≥ (15/8)|τ|. �

Proof of Theorem 1.2.

(a) Letρ > 0 and supK ≤ 2ρ/3. If M is non-orientable, consider the two-fold covering
of M. From(2.3), λ1 ± µ1 ≤ λ2 ± µ2 ≤ λ3 ± µ3.

Using(2.1) and (2.3), λ3 ±µ3 ≤ 2λ3 −ρ/3 ≤ ρ. So, the operatorsP± = (2ρ/3)I−
W±, whereI is the identity of∧±, are non-negative operators. In accordance with the
proof of Theorem 4.2 of[11], ∇W± ≡ 0. If X is a vector field onM, thenX(|W±|2) =
2 < ∇W±

X ,W± >≡ 0 and so|W±| are constants. By the Weitzenbock formulas

#|W±|2 = 2|∇W±|2 + 4ρ|W±|2 − 36 detW±,

the determinants detW± are constants. So, it follows from Proposition 9 of[5] thatM
is locally symmetric and the universal coveringM̃ of M is symmetric. Second Jensen
[9], M is isometric to eitherS4, CP2 or S2 × S2. On the other hand, sinceS2 × S2 has
supK = ρ, thenM is isometric to eitherS4 or CP2. If M is not orientable thenM is
isometric to RP4, since the only locally symmetric quotient ofS4 or CP2 is RP4.

(b) LetM be a compact Einstein four-dimensional manifold with Ricci curvatureρ = 1,
sectional curvatureK and volumeV . If M is non-orientable, consider the two-fold
covering ofM and assume thatM is non-isometric to eitherS4 or CP2. From Hitchin
(see[1, Theorem 13.30]),W± 	≡ 0. In this case, it follows from Theorem 1 and Corollary
1 of [7] that∫

M

|W±|2 dV ≥ 2ρ2V

3
. (3.2)

So, in accordance with(1.1) and (3.2), we have

χ ≥ ρ2V

4π2
. (3.3)
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On the other hand, fromLemma 2.1and our hypothesis onM,

χ < [5ρ2 + 36K2
0 − 24K0ρ]

V

12π2
, (3.4)

whereρ = 1 andK0 = inf K. Note thatK0 ≤ 1/3. By using(3.3) and (3.4), we have
thatK0 < (2 − √

2)/6 orK0 > (2 + √
2)/6. By our hypothesis,K0 ≥ (2 − √

2)/6.
ThenK0 > (2+√

2)/6 > 1/3 (contradiction). This proves thatM is isometric to either
S4 or CP2, with their normalized metrics. IfM is not orientable thenM is isometric
to RP4, since the only locally symmetric quotient ofS4 or CP2 is RP4. This proves
Theorem 1.2(b).

(c) Let ρ = 1,K ≥ 0 andM oriented. IfW+ ≡ 0 orW− ≡ 0, then it follows Hitchin
(see[1, Theorem 13.30]) thatM is isometric to eitherS4 or CP2. Let W± 	≡ 0. If
|W+|2 ≤ 2/3, it follows from (3.2) that |W+|2 = 2/3. But, from Lemma 1 of[7],
|W−|2 ≤ 2/3. So, by(3.2)we have that also|W−|2 = 2/3. Moreover, by Theorem 1
and Corollary 1 of[7], ∇W± ≡ 0. Using the same arguments of the proof of (a), we
have thatM̃ is isometric toS2 × S2, sinceW± 	≡ 0. Let |W+|2 ≥ 2/3. From Lemma
1 of [7], |W−|2 ≤ 2/3. In accordance with(3.2), |W−|2 = 2/3. Also, by Lemma 1 of
[7], |W+|2 ≤ 2/3 and so|W+|2 = 2/3. As in the previous case, we have thatM̃ is
isometric toS2 × S2.

(d) LetM be a compact-oriented definite Einstein four-manifold with Ricci curvatureρ > 0
and signatureτ 	= 0. ThenM is non-isometric toS4. Assume thatM is non-isometric
to CP2. So,W± 	≡ 0. On the other hand, sinceM is definite, thenχ = 2 + |τ|. Using
Lemma 2.1(b), we have that

|τ| < 4(36α2 − 24α+ 2)

(36α2 − 24α+ 11)
≤ 1,

sinceα = inf K/ρ ≥ (2− √
5)/6 orα = supK/ρ ≤ (2+ √

5)/6. But, this contradicts
the fact of thatτ 	= 0. So,M is isometric to CP2. �

Proof of Corollary 1.1. Assume thatM has Ricci curvatureρ = 1. So,Corollary 1.1is
consequence ofTheorem 1.2(c). �

Proof of Proposition 1.1. In accordance with Lemma 12.71 and Theorem 12.67 of[1],M
is rigid if

min 2supK − ρ, ρ − 4 inf K < 1
2ρ.

SinceM is compact, there existsx ∈ M and there exists an orthonormal basis{X1, X2, X3, X4}
of TxM such that supK = K(X1, X2) = ρ −K(X1, X3)−K(X1, X4). So,

2 supK − ρ ≤ ρ − 4 inf K.

Moreover, 2 supK − ρ < ρ/2, since supK < 3ρ/4. So,M is rigid.
The following lemma characterizes the Einstein four-manifolds with pure curvature

operator. �
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Lemma 3.1. Let M be an oriented Einstein four-manifold. Then M has pure curvature
operator if and only if|W+| = |W−| anddetW+ = detW−. Moreover,

χ ≤ (ρ2 + 6K2
0 − 4ρK0)V

4π2
.

whereK0 = inf K or K0 = supK.

Proof of Lemma 3.1. If M has pure curvature operator, the result follows from Lemma
16.20 of[1]. Let |W+| = |W−| and detW+ = detW−. Let x ∈ M andR the tensor of the
curvature ofM. In accordance with Berger[2, Lemma 2], there exists an orthonormal basis
{X1, X2, X3, X4} of the tangent spaceTxM such that ifRijkl = 〈R(Xi,Xj)Xk,Xl〉 (i, j, k,
l = 1,2,3,4), thenRijkl = 0 for all i 	= j. Moreover,R1234 = µ3, R1342 = µ2, R1423 =
µ1, where theµi satisfies(2.2). On the other hand, note thatM has pure curvature operator
(in x) if Rijkl = 0 and the set of the elements{i, j, k, l} contains more than two elements.
So, by the Bianchi identities, it is sufficient to prove thatµi = 0 for i = 1,2,3. For this,
let αi = λi − ρ/3, whereλi satisfies(2.1). Using|W+| = |W−| and(2.2)we have

3∑
i=1

αi =
3∑
i=1

αiµi = 0. (3.5)

Moreover, since detW+ = detW−,

(α1 − µ1)(α2 − µ2)(α3 − µ3) = (α1 + µ1)(α2 + µ2)(α3 + µ3). (3.6)

Then, it follows from(3.6), (3.5) and (2.1)and(2.2) that

(2α2
3 + α1α2 + µ1µ2)µ3 = (2α2

1 + α2α3 + µ2µ3)µ1

= (2α2
2 + α1α3 + µ1µ3)µ2 = 0. (3.7)

Suppose thatµ1 = 0. Using(3.5), (2.1)–(2.3)and(3.7)we have thatµ1 = µ2 = µ3 = 0.
The casesµ2 = 0 orµ3 = 0 are similar. Letµi 	= 0 for all i = 1,2,3. In accordance with
(3.7),

2α2
3 + α1α2 + µ1µ2 = 2α2

1 + α2
1 + α2α3 + µ2µ3

= 2α2
2 + α1α3 + α1α3 + µ1µ3 = 0. (3.8)

So, using(3.8), (3.5)and(2.2), we have that 3
∑3

i=1 α
2
i = ∑3

i=1µ
2
i or

3
3∑
i=1

λ2
i − ρ2 =

3∑
i=1

µ2
i . (3.9)

Using(2.6),

3∑
i=1

µ2
i ≤

3∑
i=1

λ2
i − ρ2

3
≤ 1

3

3∑
i=1

µ2
i .
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So,µi = 0 for i = 1,2,3 (contradiction). This proves thatM has pure operator curvature.
In particular,(2.4)becomes

χ = 1

4π2

∫
M

3∑
i=1

λ2
i dV.

Note that
∑3

i=1 λ
2
i = ρ2 − 2

∑
i>j λiλj.

If K0 = inf K orK0 = supK, then(λi−K0)(λk −K0) ≥ 0 and
∑3

i=1 λ
2
i ≤ ρ2+6K2

0 −
4ρK0. So

χ ≤ (ρ2 + 6K2
0 − 4ρK0)V

4π2
. �

Proof of Theorem 1.3.

(a) Letρ > 0 be the Ricci curvature ofM, whereM is a compact Einstein four-manifold
with pure operator curvature. By the proof ofLemma 3.1we have thatµi = 0 for
i = 1,2,3. Then the operators(2ρ/3)I − W± has eigenvaluesρ − λi ≥ 0, where the
λi satisfies(2.1). In this case, the proof ofTheorem 1.3(a) is similar to the proof of
Theorem 1.2(a) and we can deduce thatM is isometric to eitherS4 or RP4 or M̃ is
isometric toS2 × S2, since that CP2 does not have pure curvature operator.

(b) Let M be a submanifold ofR6, whereM is a compact Einstein four-manifold with
Ricci curvatureρ > 0. Assumes initially thatM has pure curvature operator. By
Theorem 1.3(a),M has non-negative sectional curvature. In particular, since thatM

has finite fundamental group, it follows from the result of[4] thatM is orientable.
Moreover, by Theorem 2.2 of[3], M is simply connected. So,M is isometric to either
S4 or S2 × S2. The proof of the fact thatM has pure operator curvature follows from
the following more general result: �

Proposition 3.1. Let f : Mn → Qn+2
c , be an isometric immersion, wheren ≥ 3,Mn is

an Einstein n-manifold with Ricci curvatureρ andQn+2
c is a space of constant sectional

curvature c. Ifρ > (n − 1)c, then f has flat normal connection. In particular, M has pure
curvature operator.

Proof of Proposition 3.1. Let x ∈ M, {ξ1, ξ2} an orthonormal set in(TxM)⊥ and letA1 =
Aξ1, A2 = Aξ2 the Weingarten operators in directionsξ1 andξ2, respectively. It follows
from the Gauss equation that

A2
1X− (trA1)A1X+ A2

2X− (trA2)A2X = αX, (3.10)

whereX ∈ TxM andα = −ρ + (n − 1)c. LetH = (1/n)(trA2
1 + trA2

2)
1/2 be the mean

curvature of immersion. Note thatH > 0, sinceα < 0. We can assume thatξ1 = (1/H) �H ,
where�H is the mean curvature vector of immersion. Then trA1 = nH, trA2 = 0 and(3.10)
becomes

A2
1X− nHA1X+ A2

2X = αX. (3.11)
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Note that ifλ is an eigenvalue ofA1, then it follows from(3.11) thatλ > 0. Moreover,
(3.11)is equivalent to

A2 + B2 = βI, (3.12)

whereA = (A1 − (nH/2)I)2, B = A2, I, is the identity ofTxM andβ = (n2H2/4) + α.
The immersion has flat normal connection if the Weingarten operatorsA1 andA2 are
commutative. Then, it is sufficient to prove thatAB = BA. Note thatA does not admit
eigenvalues of this form±µ, with µ 	= 0. Also, we have two cases:β = 0 or β > 0.
If β = 0, it follows from (3.12) thatA = B = 0 andAB = BA. Let β > 0 and let
{X1, . . . , Xn} be an orthonormal basis ofTxM such thatAXi = µiXi (i = 1,2, . . . , n).
LetX = X1. ThenBAX= µ1BX. If µ1 = 0 thenBAX= 0 and using(3.12), we have

|ABX|2 = 〈ABX,ABX〉 = 〈A2BX,BX〉 = 〈BA2X,BX〉 = 0.

Then, in this caseABX= BAX= 0. Letµ1 	= 0. Then

〈BAX− ABX, Xi〉 = 〈BAX, Xi〉 − 〈ABX, Xi〉
=µ1〈BX, Xi〉 − 〈BX,AXi〉 = (µ1 − µi)〈BX, Xi〉. (3.13)

If µ1 = µi then〈BAX− ABX, Xi〉 = 0. Letµ1 	= µi. By hypothesis,µ1 	= −µi. Using
(3.12), we haveXi = (1/β)(B2Xi + µ2

i Xi) andB2X = (β − µ2
1)X. Then, it follows from

(3.13)that

(µ1 − µi)〈BX, Xi〉 = µ1 − µi

β
[µ2

i + β − µ2
1]〈BX, Xi〉.

So, 〈BX, Xi〉 = 0 and follows from(3.13), that 〈BAX− ABX, Xi〉 = 0. This proves that
BA = ABand the immersion has flat normal connection. In particular,M has pure operator
curvature. �

Remark 3.1. Proposition 3.1 generalizes Theorem 2 of Erbacher[6], who proved a similar
result, whenMn is another space with constant sectional curvature.
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