On Einstein four-manifolds

Ézio de Araujo Costa
Instituto de Matematica, Universidade Federal da Bahia, Av. Ademar de Barros, Ondina, CEP 40170-110 Salvador-Bahia, Brazil

Received 18 May 2003; received in revised form 21 October 2003

Abstract

In this paper we obtain obstructions to the existence of Einstein metrics satisfying auxiliary sectional curvature bounds. In particular, we give sufficient conditions for a compact-oriented Einstein four-manifold M to be isometric to either the sphere S^{4} or the complex projective space CP^{2}. Also, we improve the Hitchin-Thorpe's inequality which relates the Euler characteristic of M and its signature.

© 2003 Elsevier B.V. All rights reserved.
MSC: 53C25; 53C24
JGP SC: Differential geometry; General relativity

Keywords: Four-manifold; Einstein manifold; Sectional curvature; Euler characteristic

1. Introduction

A basic problem in Riemannian geometry is to decide if a Riemannian manifold carries an Einstein metric. In particular, in dimension four, the spheres S^{4}, the product of two spheres of same curvature $S^{2} \times S^{2}$, the real projective space RP^{4} and the complex projective space CP^{2} are examples of compact Einstein manifolds. Initially we state our results. For this, let M be a compact-oriented four-dimensional Riemannian manifold. The Weyl tensor W of M has a decomposition $W=W^{+} \oplus W^{-}$, where $W^{ \pm}$are the self-dual and anti-self-dual Weyl tensors of M, respectively. If M is an Einstein four-manifold with Ricci curvature ρ and volume form $\mathrm{d} V$, then the Euler characteristic of M and its signature τ are given by

$$
\begin{equation*}
\chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left(\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{2 \rho^{2}}{3}\right) \mathrm{d} V \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W^{+}\right|^{2}-\left|W^{-}\right|^{2}\right) \mathrm{d} V . \tag{1.2}
\end{equation*}
$$

\]

For these Einstein manifolds, holds the classical Hitchin-Thorpe inequality (see [8]).
Theorem A (Hitchin). Let M be a compact-oriented Einstein four-manifold. Then

$$
\begin{equation*}
\chi \geq \frac{3}{2}|\tau| . \tag{1.3}
\end{equation*}
$$

Moreover, if M has non-negative (non-positive) sectional curvature, then

$$
\begin{equation*}
\chi \geq\left(\frac{3}{2}\right)^{3 / 2}|\tau| . \tag{1.4}
\end{equation*}
$$

In [7, Theorem B], Gursky and LeBrun improved the inequality (1.4) (see also [10], Proposition 10.2, p. 281 and Remark 10.1, p. 282).

Theorem B (Gursky-LeBrun). Let M be a compact and oriented Einstein four-manifold with sectional curvature K.
(i) If $K \geq 0$ and $W^{ \pm} \not \equiv 0$, then

$$
\begin{equation*}
\chi>\frac{15}{4}|\tau| . \tag{1.5}
\end{equation*}
$$

(ii) If $K \leq 0$, then

$$
\begin{equation*}
\chi \geq \frac{15}{8}|\tau| \tag{1.6}
\end{equation*}
$$

Our first result is similar to Theorem B (ii).
Theorem 1.1. Let M be a compact-oriented Einstein four-manifold with sectional curvature K and Ricci curvature ρ. If $\rho<0$ and $\inf K \geq 2 \rho / 3$, then

$$
\begin{equation*}
\chi \geq \frac{15}{8}|\tau| \tag{1.7}
\end{equation*}
$$

Example 1.1. Let M be a oriented four-manifold such that M is homeomorphic to either $\mathrm{CP}^{2} \sharp j \overline{\mathrm{CP}^{2}}, 6 \leq j \leq 8, \mathrm{CP}^{2} \sharp \mathrm{CP}^{2} \sharp \mathrm{CP}^{2}$ or $\left(S^{2} \times S^{2}\right) \sharp j \overline{\mathrm{CP}^{2}}, 5 \leq j \leq 8$, where \sharp is the connected sum. By Theorem 1.1, M do not admit an Einstein metric with Ricci curvature $\rho<0$ and sectional curvature K such that $\inf K \geq 2 \rho / 3$.

There are few known examples of compact Einstein four-manifolds M with sectional curvature $K \geq 0$. In particular, Berger [2, Theorem 2 and Remark 2] proved that if there exists $K_{0}>0$ such that $K_{0} / 4 \leq K \leq K_{0}$, then M is isometric to either S^{4}, RP^{4} or CP^{2}. In [12, Theorem 1.1a], Yang proved the following: Let M be a compact Einstein four-manifold with Ricci curvature 1. If $K \geq(\sqrt{1249}-23) / 20 \simeq 0.102843$, then M is isometric to either S^{4}, RP^{4} or CP^{2}. A compact-oriented four-manifold M is definite if the space of negative (positive) harmonic two-forms $H_{-}^{2}(M)=0\left(H_{2}^{+}(M)=0\right)$. Gursky and LeBrun [7, Theorem A] proved that if M is a compact-oriented four-manifold with $K \geq 0$ and
$H_{+}^{2}(M) \neq 0$, then M is isometric to CP^{2}. Our next theorem improves the results of Berger, Yang and Gursky/LeBrun.

Theorem 1.2. Let M be a compact Einstein four-manifold with Ricci curvature $\rho>0$ and sectional curvature K. Then we have
(a) If $\sup K \leq 2 \rho / 3$, then M is isometric to either S^{4}, RP^{4} or CP^{2}.
(b) If $\rho=1$ and $\inf K \geq(2-\sqrt{2}) / 6 \simeq 0.097631$, then M is isometric to either S^{4}, RP^{4} or CP^{2}, with their normalized metrics.
(c) Let $\rho=1, K \geq 0$ and M oriented. If $\left|W^{+}\right|^{2} \leq 2 / 3$, then M is isometric to either S^{4} or CP^{2} or the universal covering \tilde{M} of M is isometric to $S^{2} \times S^{2}$, with their normalized metrics. If $\left|W^{+}\right|^{2} \geq 2 / 3$, then M is isometric to CP^{2} or \tilde{M} is isometric to $S^{2} \times S^{2}$, with their normalized metrics.
(d) Let M be oriented definite with signature $\tau \neq 0$. If inf $K \geq(2-\sqrt{5}) \rho / 6$ or $\sup K \leq$ $(2+\sqrt{5}) \rho / 6$, then M is isometric to CP^{2}.

Corollary 1.1. Let M be a compact-oriented Einstein four-manifold with sectional curvature $K \geq 0$. If $|W|$ is constant, then M is isometric to either S^{4} or CP^{2} or \tilde{M} is isometric to $S^{2} \times S^{2}$.

An Einstein manifold M with metric g is rigid (see Definition 12.64 of [1]), if in a small neighborhood of g there is no other Einstein metric. According to Bourguignon (see Corollary 12.72 of [1]), if M has dimension 4 and its sectional curvature K satisfies $K_{0} / 6<K \leq$ K_{0}, then M is rigid. Note that in this case, $\sup K<3 \rho / 4$, where ρ is the Ricci curvature of M. This suggests that Theorem 1.2(a) can be improved for sup $K \leq 3 \rho / 4$. In fact we have the following proposition.

Proposition 1.1. A compact Einstein four-manifold with Ricci curvature $\rho>0$ is rigid, if the sectional curvature K satisfies $\sup K<3 \rho / 4$.

Another question can be considered: A Riemannian n-manifold M has pure curvature operator, if for each point x of M, there exists a basis $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ of the tangent space $T_{x} M$ such that all exterior products $X_{i} \wedge X_{j}(i<j)$ are eigenvectors of the curvature operator of M. For example, S^{4} and $S^{2} \times S^{2}$ have pure curvature operator but CP^{2} does not have this property. Also, an Einstein four-submanifold of the Euclidean space R^{6} with positive Ricci curvature has pure curvature operator (see Proposition 3.1). For these manifolds, we can improve Theorem 1.2(a).

Theorem 1.3. Let M be a compact Einstein four-manifold with Ricci curvature $\rho>0$ and sectional curvature K such that sup $K \leq \rho$:
(a) If M has pure curvature operator, then M is isometric to either S^{4}, RP^{4} or the universal covering \tilde{M} of M is isometric to $S^{2} \times S^{2}$.
(b) If M is a submanifold of the Euclidean space R^{6}, then M is isometric to either S^{4} or $S^{2} \times S^{2}$.

2. Preliminaries

For an oriented four-dimensional manifold M the bundle of two-forms splits $\wedge^{2} M=$ $\wedge^{+} \otimes \wedge^{-}$into +1 -eigenspace of the Hodge*-operator and -1 -eigenspace. The Weyl curvature tensor W is an endomorphism of $\wedge^{2} M$ such that $W=W^{+} \otimes W^{-}$, where $W^{ \pm}$: $\wedge^{ \pm} \rightarrow \wedge^{ \pm}$. Note that $W^{ \pm}$can be viewed as $(0,4)$-tensor and $\left.W^{ \pm}\right|_{\wedge^{\mp}} \equiv 0$. If M is an Einstein four-manifold with Ricci curvature ρ and let $x \in M$, we use the normal form for the curvature operator of M (see [2,8]). Then there exists an orthonormal basis for \wedge_{x}^{2} such that the curvature operator takes the form

$$
\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)
$$

where A and B are given, respectively, by

$$
\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
\mu_{1} & 0 & 0 \\
0 & \mu_{2} & 0 \\
0 & 0 & \mu_{3}
\end{array}\right)
$$

In particular, there exists an orthonormal basis of $\wedge_{x}^{ \pm}$for $W^{ \pm}(x)$ with respective eigenvalues $\lambda_{i} \pm \mu_{i}-\rho / 3$, for $i=1,2,3$. Moreover, the λ_{i} 's are relative critical values of sectional curvature and

$$
\begin{equation*}
\sum_{i=1}^{3} \lambda_{i}=\rho \tag{2.1}
\end{equation*}
$$

Also, it follows of the first Bianchi's identity that

$$
\begin{equation*}
\sum_{i=1}^{3} \mu_{i}=0 \tag{2.2}
\end{equation*}
$$

By Lemma 2 of Berger [2],

$$
\begin{equation*}
\left|\mu_{i}-\mu_{j}\right| \leq \lambda_{i}-\lambda_{j} \tag{2.3}
\end{equation*}
$$

where $i>j$ and $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3}$. Using this basis, (1.1) and (1.2) become

$$
\begin{equation*}
\chi=\frac{1}{4 \pi^{2}} \int_{M}\left[\sum_{i=1}^{3}\left(\lambda_{i}^{2}+\mu_{i}^{2}\right)\right] \mathrm{d} V \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau=\frac{1}{3 \pi^{2}} \int_{M}\left[\sum_{i=1}^{3} \lambda_{i} \mu_{i}\right] \mathrm{d} V \tag{2.5}
\end{equation*}
$$

We have the following lemma.
Lemma 2.1. Let M be a compact-oriented Einstein four-manifold with Ricci curvature ρ, volume V, sectional curvature K, Euler characteristic χ and signature τ. Let $K_{0}=\inf K$ or $K_{0}=\sup K$.
(a) Then

$$
\chi \leq \frac{\left(5 \rho^{2}+36 K_{0}^{2}-24 \rho K_{0}\right) V}{12 \pi^{2}}
$$

Moreover, if we have the equality above and $\rho>0$, then M is isometric to either S^{4} or CP^{2}.
(b) If M has $W^{ \pm} \not \equiv 0$ and $\rho>0$, then

$$
\chi>\frac{3\left(36 \alpha^{2}-24 \alpha+5\right)}{2\left(36 \alpha^{2}-24 \alpha+2\right)}|\tau|,
$$

where $\alpha=K_{0} / \rho$.
Corollary 2.1. Let M be a compact-oriented Einstein four-manifold with Ricci curvature $\rho>0$, sectional curvature K, Euler characteristic χ and signature τ. Let $\alpha=\sup K / \rho$ or $\alpha=\inf K / \rho$. If n is the number of elements of the fundamental group of M, then
(a) M is isometric to S^{4} or

$$
n<\frac{2\left(36 \alpha^{2}-24 \alpha+5\right)}{\chi}
$$

(b) If inf $K \geq(2-\sqrt{\chi-1}) \rho / 6$ or $\sup K \leq(2+\sqrt{\chi-1}) \rho / 6$ then M is simply connected.

Remark 2.1. In [8, Remark 5], Hitchin proposed the problem to know if the existence of an Einstein metric implies anything about the fundamental group of a four-manifold. Corollary 2.1 is a partial response of this question.

Proof of Lemma 2.1.

(a) Let ρ be the Ricci curvature of M and K its sectional curvature. In accordance with (2.3), $\mu_{i}^{2}+\mu_{j}^{2}-2 \mu_{i} \mu_{j} \leq \lambda_{i}^{2}+\lambda_{j}^{2}-2 \lambda_{i} \lambda_{j}$, for $i>j$. Using (2.1) and (2.2) we have

$$
\begin{equation*}
6 \sum_{i=1}^{3}\left(\lambda_{i}^{2}+\mu_{i}^{2}\right) \leq 10 \sum_{i=1}^{3} \lambda_{i}^{2}-4 \sum_{i>j} \lambda_{i} \lambda_{j}=10 \rho^{2}-24 \sum_{i>j} \lambda_{i} \lambda_{j} . \tag{2.6}
\end{equation*}
$$

Let $K_{0}=\inf K$ or $K_{0}=\sup K$. Then

$$
\begin{equation*}
\left(\lambda_{i}-K_{0}\right)\left(\lambda_{j}-K_{0}\right) \geq 0 \tag{2.7}
\end{equation*}
$$

By (2.6) and (2.7) we have $\sum_{i=1}^{3}\left(\lambda_{i}^{2}+\mu_{i}^{2}\right) \leq 5 \rho^{2} / 3+36 K_{0}^{2}-24 K_{0} \rho$ and so, it follows from (2.4) that

$$
\begin{equation*}
\chi \leq \frac{\left(5 \rho^{2}+36 K_{0}^{2}-24 K_{0} \rho\right) V}{12 \pi^{2}} \tag{2.8}
\end{equation*}
$$

If we have an equality in (2.8), then (2.7), (2.6) and (2.3) become equalities. In particular, from the equality in (2.7) we have $\lambda_{1}=\lambda_{2}=K_{0}, \lambda_{3}=\rho-2 K_{0}$ if $K_{0}=\inf K$ and $\lambda_{2}=$ $\lambda_{3}=K_{0}, \lambda_{1}=\rho-2 K_{0}$ if $K_{0}=\sup K$. In both cases, $\left|W^{ \pm}\right|$and $\operatorname{det} W^{ \pm}$are constants
and then by Proposition 9 of [5], M is locally symmetric and moreover the universal covering \tilde{M} of M is symmetric. By Jensen [9], \tilde{M} is isometric to either $S^{2} \times S^{2}, S^{4}$ or CP^{2}. Let $\rho>0$ and assume that \tilde{M} is isometric to $S^{2} \times S^{2}$. Then sup $K=$ curvature of $S^{2}=\rho$ and $\inf K=0$. If $K_{0}=\sup K$ then $\lambda_{1}=\rho-2 K_{0}=-\rho<0$ (contradiction). If $K_{0}=\inf K=0$, by equality in (2.8) we have that $\chi=5 \rho^{2} V / 12 \pi^{2}$. On the other hand, since $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=\rho$, it follows from equalities in (2.3) and (2.2) that $2 \mu_{1}=2 \mu_{2}=-\mu_{3}$ and $\left|3 \mu_{3}\right|=\rho$. In accordance with (2.4), $\chi=7 \rho^{2} V / 24 \pi^{2}$ (contradiction). So \tilde{M} is isometric to either S^{4} or CP^{2}. In particular, M has positive sectional curvature and by Synge's lemma $M=\tilde{M}$. This proves Lemma 2.1(a).
(b) Let M be a compact-oriented Einstein four-manifold with Ricci curvature $\rho>0$ and $W^{ \pm} \not \equiv 0$. By Theorem 1 and Corollary 1 of [7],

$$
\int_{M}\left|W^{ \pm}\right|^{2} \mathrm{~d} V \geq \frac{2 \rho^{2} V}{3}
$$

Using (1.1) and (1.2),

$$
\chi \geq \frac{3|\tau|}{2}+\frac{\rho^{2} V}{4 \pi^{2}}
$$

On the other hand, it follows from the result of Hitchin [1, Theorem 13.30] that M is non-isometric to either S^{4} or CP^{2} and so, using the stricty inequality in Lemma 2.1(a), we obtain that

$$
\chi>\frac{3}{2}\left(\frac{36 \alpha^{2}-24 \alpha+5}{36 \alpha^{2}-24 \alpha+2}\right)|\tau|,
$$

where $\alpha=\inf K / \rho$ or $\alpha=\sup K / \rho$.

Proof of Corollary 2.1.

(a) Let M be a compact-oriented Einstein four-manifold with Ricci curvature $\rho>0$. If M is non-isometric to S^{4}, then the universal covering \tilde{M} of M is non-isometric to S^{4} and has Ricci curvature $\rho>0$. Bishop's inequality then asserts that \tilde{M} has volume $\tilde{V}<2 \pi^{2} / \rho^{2}$. If n is the number of elements of the fundamental group of M, then the Euler characteristic $\tilde{\chi}$ of \tilde{M} satisfies $\tilde{\chi}=n \chi$, where χ is the Euler characteristic of M. Using Lemma 2.1(a) for \tilde{M}, we have that $n \chi<2\left(36 K_{0}^{2}-24 \rho K_{0}+5 \rho^{2}\right) / \rho^{2}$ and this proves Corollary 2.1(a).
(b) Let $\rho>0$ the Ricci curvature of M and K its sectional curvature. Note that if inf $K \geq$ $(2-\sqrt{\chi-1} \rho) / 6$ or $\sup K \leq(2+\sqrt{\chi-1} \rho) / 6$, then

$$
\frac{2\left(36 \alpha^{2}-24 \alpha+5\right)}{\chi} \leq 2
$$

where $\alpha=\inf K / \rho$ or $\alpha=\sup K / \rho$. So, by Corollary 2.1(a), $n=1$ and this proves that M is simply connected.

3. Proofs

Proof of Theorem 1.1. Let M be a compact-oriented Einstein four-manifold with Ricci curvature ρ, volume V and sectional curvature K. If $\rho<0$ and $K_{0}=\inf K \geq 2 \rho / 3$ then $K_{0}=\inf K \leq 0$. So, $36 K_{0}^{2}-24 K_{0} \rho \leq 0$ and it follows from Lemma 2.1 that

$$
\begin{equation*}
\chi \leq \frac{5 \rho^{2} V}{12 \pi^{2}} \tag{3.1}
\end{equation*}
$$

On the other hand, using (2.4) and (2.5),

$$
2 \chi \pm 3 \tau=\frac{1}{2 \pi^{2}} \int_{M} \sum_{i=1}^{3}\left[\lambda_{i} \pm \mu_{i}\right]^{2} \mathrm{~d} V
$$

and so, by the Schwarz inequality,

$$
2 \chi-3|\tau| \geq \frac{\rho^{2} V}{6 \pi^{2}}
$$

Using (3.1), we have that $\chi \geq(15 / 8)|\tau|$.

Proof of Theorem 1.2.

(a) Let $\rho>0$ and sup $K \leq 2 \rho / 3$. If M is non-orientable, consider the two-fold covering of M. From (2.3), $\lambda_{1} \pm \mu_{1} \leq \lambda_{2} \pm \mu_{2} \leq \lambda_{3} \pm \mu_{3}$.

Using (2.1) and (2.3), $\lambda_{3} \pm \mu_{3} \leq 2 \lambda_{3}-\rho / 3 \leq \rho$. So, the operators $P_{ \pm}=(2 \rho / 3) I-$ $W^{ \pm}$, where I is the identity of $\wedge^{ \pm}$, are non-negative operators. In accordance with the proof of Theorem 4.2 of [11], $\nabla W^{ \pm} \equiv 0$. If X is a vector field on M, then $X\left(\left|W^{ \pm}\right|^{2}\right)=$ $2<\nabla_{X}^{W^{ \pm}}, W^{ \pm}>\equiv 0$ and so $\left|W^{ \pm}\right|$are constants. By the Weitzenbock formulas

$$
\Delta\left|W^{ \pm}\right|^{2}=2\left|\nabla W^{ \pm}\right|^{2}+4 \rho\left|W^{ \pm}\right|^{2}-36 \operatorname{det} W^{ \pm}
$$

the determinants $\operatorname{det} W^{ \pm}$are constants. So, it follows from Proposition 9 of [5] that M is locally symmetric and the universal covering \tilde{M} of M is symmetric. Second Jensen [9], M is isometric to either S^{4}, CP^{2} or $S^{2} \times S^{2}$. On the other hand, since $S^{2} \times S^{2}$ has $\sup K=\rho$, then M is isometric to either S^{4} or CP^{2}. If M is not orientable then M is isometric to RP^{4}, since the only locally symmetric quotient of S^{4} or CP^{2} is RP^{4}.
(b) Let M be a compact Einstein four-dimensional manifold with Ricci curvature $\rho=1$, sectional curvature K and volume V. If M is non-orientable, consider the two-fold covering of M and assume that M is non-isometric to either S^{4} or CP^{2}. From Hitchin (see [1, Theorem 13.30]), $W^{ \pm} \not \equiv 0$. In this case, it follows from Theorem 1 and Corollary 1 of [7] that

$$
\begin{equation*}
\int_{M}\left|W^{ \pm}\right|^{2} \mathrm{~d} V \geq \frac{2 \rho^{2} V}{3} \tag{3.2}
\end{equation*}
$$

So, in accordance with (1.1) and (3.2), we have

$$
\begin{equation*}
\chi \geq \frac{\rho^{2} V}{4 \pi^{2}} \tag{3.3}
\end{equation*}
$$

On the other hand, from Lemma 2.1 and our hypothesis on M,

$$
\begin{equation*}
\chi<\left[5 \rho^{2}+36 K_{0}^{2}-24 K_{0} \rho\right] \frac{V}{12 \pi^{2}}, \tag{3.4}
\end{equation*}
$$

where $\rho=1$ and $K_{0}=\inf K$. Note that $K_{0} \leq 1 / 3$. By using (3.3) and (3.4), we have that $K_{0}<(2-\sqrt{2}) / 6$ or $K_{0}>(2+\sqrt{2}) / 6$. By our hypothesis, $K_{0} \geq(2-\sqrt{2}) / 6$. Then $K_{0}>(2+\sqrt{2}) / 6>1 / 3$ (contradiction). This proves that M is isometric to either S^{4} or CP^{2}, with their normalized metrics. If M is not orientable then M is isometric to RP^{4}, since the only locally symmetric quotient of S^{4} or CP^{2} is RP^{4}. This proves Theorem 1.2(b).
(c) Let $\rho=1, K \geq 0$ and M oriented. If $W^{+} \equiv 0$ or $W^{-} \equiv 0$, then it follows Hitchin (see $\left[1\right.$, Theorem 13.30]) that M is isometric to either S^{4} or CP^{2}. Let $W^{ \pm} \not \equiv 0$. If $\left|W^{+}\right|^{2} \leq 2 / 3$, it follows from (3.2) that $\left|W^{+}\right|^{2}=2 / 3$. But, from Lemma 1 of [7], $\left|W^{-}\right|^{2} \leq 2 / 3$. So, by (3.2) we have that also $\left|W^{-}\right|^{2}=2 / 3$. Moreover, by Theorem 1 and Corollary 1 of [7], $\nabla W^{ \pm} \equiv 0$. Using the same arguments of the proof of (a), we have that \tilde{M} is isometric to $S^{2} \times S^{2}$, since $W^{ \pm} \not \equiv 0$. Let $\left|W^{+}\right|^{2} \geq 2 / 3$. From Lemma 1 of [7], $\left|W^{-}\right|^{2} \leq 2 / 3$. In accordance with (3.2), $\left|W^{-}\right|^{2}=2 / 3$. Also, by Lemma 1 of [7], $\left|W^{+}\right|^{2} \leq 2 / 3$ and so $\left|W^{+}\right|^{2}=2 / 3$. As in the previous case, we have that \tilde{M} is isometric to $S^{2} \times S^{2}$.
(d) Let M be a compact-oriented definite Einstein four-manifold with Ricci curvature $\rho>0$ and signature $\tau \neq 0$. Then M is non-isometric to S^{4}. Assume that M is non-isometric to CP^{2}. So, $W^{ \pm} \not \equiv 0$. On the other hand, since M is definite, then $\chi=2+|\tau|$. Using Lemma 2.1(b), we have that

$$
|\tau|<\frac{4\left(36 \alpha^{2}-24 \alpha+2\right)}{\left(36 \alpha^{2}-24 \alpha+11\right)} \leq 1
$$

since $\alpha=\inf K / \rho \geq(2-\sqrt{5}) / 6$ or $\alpha=\sup K / \rho \leq(2+\sqrt{5}) / 6$. But, this contradicts the fact of that $\tau \neq 0$. So, M is isometric to CP^{2}.

Proof of Corollary 1.1. Assume that M has Ricci curvature $\rho=1$. So, Corollary 1.1 is consequence of Theorem 1.2(c).

Proof of Proposition 1.1. In accordance with Lemma 12.71 and Theorem 12.67 of [1], M is rigid if

$$
\min 2 \sup K-\rho, \rho-4 \inf K<\frac{1}{2} \rho .
$$

Since M is compact, there exists $x \in M$ and there exists an orthonormal basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ of $T_{x} M$ such that $\sup K=K\left(X_{1}, X_{2}\right)=\rho-K\left(X_{1}, X_{3}\right)-K\left(X_{1}, X_{4}\right)$. So,
$2 \sup K-\rho \leq \rho-4 \inf K$.
Moreover, 2 sup $K-\rho<\rho / 2$, since sup $K<3 \rho / 4$. So, M is rigid.
The following lemma characterizes the Einstein four-manifolds with pure curvature operator.

Lemma 3.1. Let M be an oriented Einstein four-manifold. Then M has pure curvature operator if and only if $\left|W^{+}\right|=\left|W^{-}\right|$and $\operatorname{det} W^{+}=\operatorname{det} W^{-}$. Moreover,

$$
\chi \leq \frac{\left(\rho^{2}+6 K_{0}^{2}-4 \rho K_{0}\right) V}{4 \pi^{2}}
$$

where $K_{0}=\inf K$ or $K_{0}=\sup K$.
Proof of Lemma 3.1. If M has pure curvature operator, the result follows from Lemma 16.20 of [1]. Let $\left|W^{+}\right|=\left|W^{-}\right|$and $\operatorname{det} W^{+}=\operatorname{det} W^{-}$. Let $x \in M$ and R the tensor of the curvature of M. In accordance with Berger [2, Lemma 2], there exists an orthonormal basis $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ of the tangent space $T_{x} M$ such that if $R_{i j k l}=\left\langle R\left(X_{i}, X_{j}\right) X_{k}, X_{l}\right\rangle(i, j, k$, $l=1,2,3,4)$, then $R_{i j k l}=0$ for all $i \neq j$. Moreover, $R_{1234}=\mu_{3}, R_{1342}=\mu_{2}, R_{1423}=$ μ_{1}, where the μ_{i} satisfies (2.2). On the other hand, note that M has pure curvature operator (in x) if $R_{i j k l}=0$ and the set of the elements $\{i, j, k, l\}$ contains more than two elements. So, by the Bianchi identities, it is sufficient to prove that $\mu_{i}=0$ for $i=1,2,3$. For this, let $\alpha_{i}=\lambda_{i}-\rho / 3$, where λ_{i} satisfies (2.1). Using $\left|W^{+}\right|=\left|W^{-}\right|$and (2.2) we have

$$
\begin{equation*}
\sum_{i=1}^{3} \alpha_{i}=\sum_{i=1}^{3} \alpha_{i} \mu_{i}=0 \tag{3.5}
\end{equation*}
$$

Moreover, since $\operatorname{det} W^{+}=\operatorname{det} W^{-}$,

$$
\begin{equation*}
\left(\alpha_{1}-\mu_{1}\right)\left(\alpha_{2}-\mu_{2}\right)\left(\alpha_{3}-\mu_{3}\right)=\left(\alpha_{1}+\mu_{1}\right)\left(\alpha_{2}+\mu_{2}\right)\left(\alpha_{3}+\mu_{3}\right) \tag{3.6}
\end{equation*}
$$

Then, it follows from (3.6), (3.5) and (2.1) and (2.2) that

$$
\begin{align*}
\left(2 \alpha_{3}^{2}+\alpha_{1} \alpha_{2}+\mu_{1} \mu_{2}\right) \mu_{3} & =\left(2 \alpha_{1}^{2}+\alpha_{2} \alpha_{3}+\mu_{2} \mu_{3}\right) \mu_{1} \\
& =\left(2 \alpha_{2}^{2}+\alpha_{1} \alpha_{3}+\mu_{1} \mu_{3}\right) \mu_{2}=0 \tag{3.7}
\end{align*}
$$

Suppose that $\mu_{1}=0$. Using (3.5), (2.1)-(2.3) and (3.7) we have that $\mu_{1}=\mu_{2}=\mu_{3}=0$. The cases $\mu_{2}=0$ or $\mu_{3}=0$ are similar. Let $\mu_{i} \neq 0$ for all $i=1,2,3$. In accordance with (3.7),

$$
\begin{align*}
2 \alpha_{3}^{2}+\alpha_{1} \alpha_{2}+\mu_{1} \mu_{2} & =2 \alpha_{1}^{2}+\alpha_{1}^{2}+\alpha_{2} \alpha_{3}+\mu_{2} \mu_{3} \\
& =2 \alpha_{2}^{2}+\alpha_{1} \alpha_{3}+\alpha_{1} \alpha_{3}+\mu_{1} \mu_{3}=0 \tag{3.8}
\end{align*}
$$

So, using (3.8), (3.5) and (2.2), we have that $3 \sum_{i=1}^{3} \alpha_{i}^{2}=\sum_{i=1}^{3} \mu_{i}^{2}$ or

$$
\begin{equation*}
3 \sum_{i=1}^{3} \lambda_{i}^{2}-\rho^{2}=\sum_{i=1}^{3} \mu_{i}^{2} \tag{3.9}
\end{equation*}
$$

Using (2.6),

$$
\sum_{i=1}^{3} \mu_{i}^{2} \leq \sum_{i=1}^{3} \lambda_{i}^{2}-\frac{\rho^{2}}{3} \leq \frac{1}{3} \sum_{i=1}^{3} \mu_{i}^{2}
$$

So, $\mu_{i}=0$ for $i=1,2,3$ (contradiction). This proves that M has pure operator curvature. In particular, (2.4) becomes

$$
\chi=\frac{1}{4 \pi^{2}} \int_{M} \sum_{i=1}^{3} \lambda_{i}^{2} \mathrm{~d} V
$$

Note that $\sum_{i=1}^{3} \lambda_{i}^{2}=\rho^{2}-2 \sum_{i>j} \lambda_{i} \lambda_{j}$.
If $K_{0}=\inf K$ or $K_{0}=\sup K$, then $\left(\lambda_{i}-K_{0}\right)\left(\lambda_{k}-K_{0}\right) \geq 0$ and $\sum_{i=1}^{3} \lambda_{i}^{2} \leq \rho^{2}+6 K_{0}^{2}-$ $4 \rho K_{0}$. So

$$
\chi \leq \frac{\left(\rho^{2}+6 K_{0}^{2}-4 \rho K_{0}\right) V}{4 \pi^{2}}
$$

Proof of Theorem 1.3.

(a) Let $\rho>0$ be the Ricci curvature of M, where M is a compact Einstein four-manifold with pure operator curvature. By the proof of Lemma 3.1 we have that $\mu_{i}=0$ for $i=1,2,3$. Then the operators $(2 \rho / 3) I-W^{ \pm}$has eigenvalues $\rho-\lambda_{i} \geq 0$, where the λ_{i} satisfies (2.1). In this case, the proof of Theorem 1.3(a) is similar to the proof of Theorem 1.2(a) and we can deduce that M is isometric to either S^{4} or RP^{4} or \tilde{M} is isometric to $S^{2} \times S^{2}$, since that CP^{2} does not have pure curvature operator.
(b) Let M be a submanifold of R^{6}, where M is a compact Einstein four-manifold with Ricci curvature $\rho>0$. Assumes initially that M has pure curvature operator. By Theorem 1.3(a), M has non-negative sectional curvature. In particular, since that M has finite fundamental group, it follows from the result of [4] that M is orientable. Moreover, by Theorem 2.2 of [3], M is simply connected. So, M is isometric to either S^{4} or $S^{2} \times S^{2}$. The proof of the fact that M has pure operator curvature follows from the following more general result:

Proposition 3.1. Let $f: M^{n} \rightarrow Q_{c}^{n+2}$, be an isometric immersion, where $n \geq 3, M^{n}$ is an Einstein n-manifold with Ricci curvature ρ and Q_{c}^{n+2} is a space of constant sectional curvature c. If $\rho>(n-1) c$, then f has flat normal connection. In particular, M has pure curvature operator.

Proof of Proposition 3.1. Let $x \in M,\left\{\xi_{1}, \xi_{2}\right\}$ an orthonormal set in $\left(T_{x} M\right)^{\perp}$ and let $A_{1}=$ $A_{\xi_{1}}, A_{2}=A_{\xi_{2}}$ the Weingarten operators in directions ξ_{1} and ξ_{2}, respectively. It follows from the Gauss equation that

$$
\begin{equation*}
A_{1}^{2} X-\left(\operatorname{tr} A_{1}\right) A_{1} X+A_{2}^{2} X-\left(\operatorname{tr} A_{2}\right) A_{2} X=\alpha X \tag{3.10}
\end{equation*}
$$

where $X \in T_{x} M$ and $\alpha=-\rho+(n-1) c$. Let $H=(1 / n)\left(\operatorname{tr} A_{1}^{2}+\operatorname{tr} A_{2}^{2}\right)^{1 / 2}$ be the mean curvature of immersion. Note that $H>0$, since $\alpha<0$. We can assume that $\xi_{1}=(1 / H) \vec{H}$, where \vec{H} is the mean curvature vector of immersion. Then $\operatorname{tr} A_{1}=n H, \operatorname{tr} A_{2}=0$ and (3.10) becomes

$$
\begin{equation*}
A_{1}^{2} X-n H A_{1} X+A_{2}^{2} X=\alpha X \tag{3.11}
\end{equation*}
$$

Note that if λ is an eigenvalue of A_{1}, then it follows from (3.11) that $\lambda>0$. Moreover, (3.11) is equivalent to

$$
\begin{equation*}
A^{2}+B^{2}=\beta I \tag{3.12}
\end{equation*}
$$

where $A=\left(A_{1}-(n H / 2) I\right)^{2}, B=A_{2}, I$, is the identity of $T_{x} M$ and $\beta=\left(n^{2} H^{2} / 4\right)+\alpha$. The immersion has flat normal connection if the Weingarten operators A_{1} and A_{2} are commutative. Then, it is sufficient to prove that $A B=B A$. Note that A does not admit eigenvalues of this form $\pm \mu$, with $\mu \neq 0$. Also, we have two cases: $\beta=0$ or $\beta>0$. If $\beta=0$, it follows from (3.12) that $A=B=0$ and $A B=B A$. Let $\beta>0$ and let $\left\{X_{1}, \ldots, X_{n}\right\}$ be an orthonormal basis of $T_{x} M$ such that $A X_{i}=\mu_{i} X_{i}(i=1,2, \ldots, n)$. Let $X=X_{1}$. Then $B A X=\mu_{1} B X$. If $\mu_{1}=0$ then $B A X=0$ and using (3.12), we have

$$
|A B X|^{2}=\langle A B X, A B X\rangle=\left\langle A^{2} B X, B X\right\rangle=\left\langle B A^{2} X, B X\right\rangle=0
$$

Then, in this case $A B X=B A X=0$. Let $\mu_{1} \neq 0$. Then

$$
\begin{align*}
\left\langle B A X-A B X, X_{i}\right\rangle & =\left\langle B A X, X_{i}\right\rangle-\left\langle A B X, X_{i}\right\rangle \\
& =\mu_{1}\left\langle B X, X_{i}\right\rangle-\left\langle B X, A X_{i}\right\rangle=\left(\mu_{1}-\mu_{i}\right)\left\langle B X, X_{i}\right\rangle \tag{3.13}
\end{align*}
$$

If $\mu_{1}=\mu_{i}$ then $\left\langle B A X-A B X, X_{i}\right\rangle=0$. Let $\mu_{1} \neq \mu_{i}$. By hypothesis, $\mu_{1} \neq-\mu_{i}$. Using (3.12), we have $X_{i}=(1 / \beta)\left(B^{2} X_{i}+\mu_{i}^{2} X_{i}\right)$ and $B^{2} X=\left(\beta-\mu_{1}^{2}\right) X$. Then, it follows from (3.13) that

$$
\left(\mu_{1}-\mu_{i}\right)\left\langle B X, X_{i}\right\rangle=\frac{\mu_{1}-\mu_{i}}{\beta}\left[\mu_{i}^{2}+\beta-\mu_{1}^{2}\right]\left\langle B X, X_{i}\right\rangle
$$

So, $\left\langle B X, X_{i}\right\rangle=0$ and follows from (3.13), that $\left\langle B A X-A B X, X_{i}\right\rangle=0$. This proves that $B A=A B$ and the immersion has flat normal connection. In particular, M has pure operator curvature.

Remark 3.1. Proposition 3.1 generalizes Theorem 2 of Erbacher [6], who proved a similar result, when M^{n} is another space with constant sectional curvature.

Acknowledgements

The author thanks the referee for his suggestions and corrections.

References

[1] A. Besse, Einstein Manifolds, Springer-Verlag, 1980.
[2] M. Berger, Sur quelques varietes d'Einstein compacts, Ann. Mat. Pur. Appl. 53 (1961) 89-96.
[3] Y. Baldin, F. Mercuri, Isometric immersions in codimension two with nonnegative curvature, Math. Z. 173 (1980) 111-117.
[4] Y. Baldin, F. Mercuri, Codimension two nonorientable submanifolds with nonnegative curvature, Proc. AMS 103 (3) (1988) 18-20.
[5] A. Derdzinsky, Self-dual Kaehler manifolds and Einstein manifolds of dimension four, Comp. Math. 49 (1983) 405-433.
[6] J. Erbacher, Isometric immersions of constant mean curvature and triavility of the normal connection, Nagoya Math. J. 45 (1971) 139-165.
[7] M.J. Gursky, C. LeBrun, On Einstein manifolds of positive sectional curvature, Ann. Global Anal. Geom. 17 (1999) 315-328.
[8] N.J. Hitchin, On compact four-dimensional Einstein manifolds, J. Diff. Geom. 9 (1974) 435-442.
[9] G. Jensen, Homogeneous Einstein spaces of dimension four, J. Diff. Geom. 3 (1969) 309-349.
[10] C. LeBrun, M. Wang, Essays on Einstein manifolds. Surveys in Differential Geometry, vol. VI, International Press, Boston, MA, 1999.
[11] M.J. Micallef, M.Y. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (3) (1993) 649672.
[12] D.G. Yang, Rigidity of Einstein 4-manifolds with positive curvature, Invent. Math. 142 (2000) 435-450.

[^0]: E-mail address: ezio@ufba.br (É. de Araujo Costa).

